翻訳と辞書
Words near each other
・ Wignacourt Aqueduct
・ Wignacourt Tower
・ Wignacourt towers
・ Wignall
・ Wignall Nunataks
・ Wignall Peak
・ Wignehies
・ Wigner crystal
・ Wigner D-matrix
・ Wigner distribution
・ Wigner distribution function
・ Wigner effect
・ Wigner lattice
・ Wigner Medal
・ Wigner quasiprobability distribution
Wigner semicircle distribution
・ Wigner's classification
・ Wigner's friend
・ Wigner's theorem
・ Wigner–d'Espagnat inequality
・ Wigner–Eckart theorem
・ Wigner–Seitz cell
・ Wigner–Seitz radius
・ Wigner–Weyl transform
・ Wignick Island
・ Wignicourt
・ WIGO
・ Wigo
・ WIGO (AM)
・ WIGO-FM


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wigner semicircle distribution : ウィキペディア英語版
Wigner semicircle distribution
+ \frac\right)}\!
for -R\leq x \leq R|
mean =0\,|
median =0\,|
mode =0\,|
variance =\frac\!|
skewness =0\,|
kurtosis =-1\,|
entropy =\ln (\pi R) - \frac12 \,|
mgf =2\,\frac|
char =2\,\frac|
}}
The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution supported on the interval (''R'' ) the graph of whose probability density function ''f'' is a semicircle of radius ''R'' centered at (0, 0) and then suitably normalized (so that it is really a semi-ellipse):
:f(x)=\sqrt\,
for −''R'' ≤ ''x'' ≤ ''R'', and ''f''(''x'') = 0 if ''R'' < ''|x|''.
This distribution arises as the limiting distribution of eigenvalues of many random symmetric matrices as the size of the matrix approaches infinity.
It is a scaled beta distribution, more precisely, if ''Y'' is beta distributed with parameters α = β = 3/2, then ''X'' = 2''RY'' – ''R'' has the above Wigner semicircle distribution.
== General properties ==
The Chebyshev polynomials of the second kind are orthogonal polynomials with respect to the Wigner semicircle distribution.
For positive integers ''n'', the 2''n''-th moment of this distribution is
:E(X^)=\left(\right)^ C_n\,
where ''X'' is any random variable with this distribution and ''C''''n'' is the ''n''th Catalan number
:C_n=,\,
so that the moments are the Catalan numbers if ''R'' = 2. (Because of symmetry, all of the odd-order moments are zero.)
Making the substitution x=R\cos(\theta) into the defining equation for the moment generating function it can be seen that:
:M(t)=\frac\int_0^\pi e^\sin^2(\theta)\,d\theta
which can be solved (see Abramowitz and Stegun (§9.6.18) )
to yield:
:M(t)=2\,\frac
where I_1(z) is the modified Bessel function. Similarly, the characteristic function is given by:
:\varphi(t)=2\,\frac
where J_1(z) is the Bessel function. (See Abramowitz and Stegun (§9.1.20) ), noting that the corresponding integral involving \sin(Rt\cos(\theta)) is zero.)
In the limit of R approaching zero, the Wigner semicircle distribution becomes a Dirac delta function.
Differential equation

\left\\right\}


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wigner semicircle distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.